
Combining Tables

1

Combining Tables – Strategies

 Append

 Merge

 Relationships

2

Appending Tables

 Columns are stacked based on matching Column Names

and Data Types

 Column names must match

 Data Types must match or lesser (i.e., more generic)

data type is assigned

3

Appending Tables (cont)

4

Merging Tables

 Columns from one table are “copy/pasted” to another table

 Like performing a VLOOKUP or XLOOKUP

 Each table must contain a common column that has the same data

type

 Can be performed using Power Query’s Merge Tables feature

 Can be performed using the DAX RELATED function (flows Many to 1)

5

Class = RELATED(tblCatalog[Class Name])

Merging Tables (cont.)

6

Creating Relationships

 Each table must contain a common column that has the same data

type (names can be different)

 An active connection is created between the common columns

(key column)

 Lookups are performed “live” on an as-needed basis

7

Creating Relationships (cont)

8

Relationships in Action

 Allows you to keep the
tables separate yet still
coordinate a conversation
(lookup) between the
tables

 Requires a “key” column
in each table

 Can be 1:1 or 1:Many

9

Join Types

10

JOIN types

11

Left Join Right Join

Outer Join Inner Join

JOIN types

 Outer Join

 All rows will be kept in the result

 Rows that do not have a

corresponding value in the

opposing table will receive nulls

for fields that are unique to that

table

12

JOIN types

 Inner Join

 Only rows that can be matched

between both tables will be kept in

the result

13

JOIN types

 Left Join

 All rows from the first table

(left) are retained

 Only rows in the second table

that have a corresponding key

in the first table are retained

 When no match is found, null

values are supplied to unique

columns in the second table

14

JOIN types

 Right Join

 All rows from the second table

are retained

 Only rows in the first table that

have a corresponding key in

the second table are retained

 When no match is found, null

values are supplied to unique

columns in the first table

15Labs 1 - 3

Calendar Tables

16

Calendar Tables

Date columns are difficult to model

17

Why use a Calendar Table?

18

 If you have a date field anywhere in the model,
create a Calendar Table

 Needed if you plan to use Time Intelligence functions

 DATESQTD()

 DATESINPERIOD()

 DATEADD()

 DATESYTD()

 ENDOFMONTH()

 PREVIOUSMONTH()

 TOTALMTD()

 TOTALYTD()

Why use a Calendar Table?

19

 Serves as a lookup table for all date inquiries

 Reduces the amount of repetitive data

Calendar Table Requirements

20

 You need a DATE column that is set to a DATE data type

 Dates must be contiguous

 No skipped days between start date and end date

 Can cover only the date range of the data, but it’s best to cover from Jan 1 of
oldest year to Dec 31 of latest year (or beginning to end of fiscal year)

 Needs to be marked in Power Pivot as a Date Table

Pro Tip: If you have Date & Time information stored in a single column, consider splitting the dates and times
into separate columns. This will decrease cardinality (uniqueness) in those columns and provide for greater
compression of the Data Model.

Low-Cardinality – Dates and Time

 If you were to load a 1 year’s worth of dates and time information

 31,536,000 combinations

 365 days × 24 hours × 60 minutes × 60 seconds

 Split the Date and Time into two separate fields

 86,765 combinations (0.28% of the original list)

• 365 combinations for dates

• 86,400 combinations for time

 If time component is not needed, remove it from the model

21

Low-Cardinality – Big Numbers

 With 100,000,000 numbers there are 100,000,000 combinations

 Split the number into two 10,000 number ranges (Sqrt of 100M)

 Use the IntegerDivide() and Mod() functions

 First expression performs integer division divided by 10,000

 Second expression performs a modulo operation divided by 10,000

22

Number.IntegerDivide([BigNumber], 10000)

Number.Mod([BigNumber], 10000)

Low-Cardinality – Big Numbers (cont.)

 Both fields have a potential of 10,000 unique values

 20,000 unique values when combined

 0.01% the size of the original 100,000,000 combination list

 Restore the original number by

 This process is more processor-intensive

23

(BigNumber1 × 10000) + BigNumber2

Ways to create a Calendar Table

Many ways to create a Calendar Table

 Excel

 SQL

 Azure

 DAX (CalendarAuto or Calendar functions)

 Power Query

24

Creating a Dynamic Calendar Table

25

Using DAX

=CALENDAR()

=CALENDARAUTO()

 Creates a table with a single column named “Date”

 Calculated from Jan 1 to Dec 31 based on actual data in the model

(not from calculated columns)

=CALENDARAUTO(9)

• Fiscal year ends in September

Beware of CALENDARAUTO()

26

CALENDARAUTO sounds like the go-to calendar creator, but

remember, it looks at ALL date fields in the data model.

Scenario – Imagine a data model with [Sale Date] and [Birth Date]

and the sales are only for the last 3 years.

The calendar table would start at 1/1 of the oldest persons birth year

and span to 12/31 of the last sale’s year. This has the potential of

severely bloating the calendar table.

Creating a Dynamic Calendar Table

27

Using DAX

= CALENDAR(DATE(2018, 1, 1), DATE(2020, 12, 31))

= CALENDAR(TODAY() - 365, TODAY() + 365)

= CALENDAR(MIN(Sales[OrderDate]), MAX(Sales[OrderDate]))

= CALENDAR(FIRSTDATE(Sales[OrderDate]), LASTDATE(Sales[OrderDate]))

Potential Ideal Date Field

28

To achieve the full years dates for all sales, consider discovering the

oldest and youngest years but hard-coding the start and end days.

Dates =
CALENDAR (

DATE (YEAR (MIN (Sales[Order Date])), 1, 1),
DATE (YEAR (MAX (Sales[Order Date])), 12, 31))

Dates =
CALENDAR (

DATE (YEAR (FIRSTDATE (Sales[Order Date])), 1, 1),
DATE (YEAR (LASTDATE (Sales[Order Date])), 12, 31))

Labs 4 - 6

DAX

(Data Analysis Expressions)

29

What is DAX

30

 Data Analysis Expressions

 The language of

 Power Pivot

 Power BI

 SQL Server Analysis Services (SSAS)

 Resembles Excel functions (born with Power Pivot 2010)

DAX (as opposed to Excel)

 Has no concept of rows and columns

 Works with tables and fields

 To locate an item, you must search for it using functions

 Many new functions not available in Excel

 Designed for data models

31

DAX is a Functional Language

 Everything is written as a function that returns either a:

 Scalar value (i.e., single value)

 A column of values

 A table of columns

 Functions have arguments, and arguments can be other functions

32

MyData =
SUMX (

FILTER (VALUES ('Date'[Year]), 'Date'[Year] > 2018),
IF ('Date'[Year] < 2020, [Sales Amount] * .09, [Sales Amount] * .1))

Create Readable Code

www.daxformatter.com

33

Calendar=VAR BaseCalendar=CALENDAR(DATE(

2016, 1, 1),DATE(2022, 12, 31)) RETURN

GENERATE(BaseCalendar, VAR BaseDate=[Date]

VAR YearDate=YEAR(BaseDate) VAR

MonthNumber=MONTH(BaseDate) VAR

MonthName=FORMAT(BaseDate, "mmmm") VAR

YearMonthName=FORMAT(BaseDate, "mmm yy")

VAR YearMonthNumber=YearDate*12+

MonthNumber-1 RETURN ROW("Day",BaseDate,

"Year",YearDate,"Month Number",MonthNumber,

"Month",MonthName,"Year Month Number",

YearMonthNumber,"Year Month",YearMonthName))

http://www.daxformatter.com/

Create Readable Code

34

=SUMX(FILTER(VALUES('Date'[Year]),'Date'
[Year]>2018),IF('Date'[Year]<=2020,[Sales

Amount]*.09,[Sales Amount]*.1))

www.daxformatter.com

http://www.daxformatter.com/

DAX Syntax

Name of Thing = Expression that defines thing

 example:

Total Revenue =
SUM (Sales[SalesAmount])

FullName =
Customer[FirstName] & " " & Customer[LastName]

35

DAX Typing Conventions

 Fully-qualified field names (ex: Customer[FullName] instead of

[FullName])

 Field name only for Measures (ex: [Profit])

 Liberal use of spaces (ex: SUM (Sales[LineTotal]))

 Add line break between arguments (see DAXFORMATTER.com)

36

DAX Calculations

37

DAX Creates

 Calculated Columns

 Calculated Measures (Measures)

 Calculated Tables

38

Calculated Columns

 Evaluates each row individually, like “helper columns” in Excel

 Cannot access other rows from same table or other tables

 Product[Price]
 [Price] field name (explicit / required)

 Product (explicit / optional, but you should always reference)

 For the current row (implicit)

 Different result (calculation) for each row

 No additional aggregation is needed

 Computed at refresh time

 Stored in model (uses memory )

39

Calculated Columns (example)

40

Profit = Sales[SaleAmount] – Sales[Cost]

“Sales”

table

Measures

 Starts with the entire data model

 Applies all relevant filters

 Pivot Table Rows & Columns

 Slicers

 Visuals

 Functions (e.g., FILTER, CALCULATE, ALL, etc.)

 Performs an expression on the remaining post-filtered data

 Requires an aggregator to process the initial results into a scalar

value

41

Advantage of Measures

 Measures are computed at the aggregate level

 Does not work at row-by-row level

 Results are NOT stored in memory ☺

 Performed when needed (lazy evaluation)

Calculated Column (current row only)

 Profit = Sales[SalePrice] - Sales[Cost]

Measure (all values in stated fields)

 Profit = SUM (Sales[SalePrice]) - SUM (Sales[Cost])

42

Measure Naming Conventions

 Avoid placing table name in front of used measure;

helps distinguish a referenced Measure from a referenced field

 ex: [Profit] instead of Sales[Profit]

 Makes it easy to move the measure to a different table

 Calculated Column → Table[Column]

 Measure → [Measure]

 Consider storing all Measures in a folder:

 Model View → Measure → Properties → Display Folders

43

Calculated Columns vs Measures

 Calculated Column

 When you need to slice or filter on a value

 Measure

 Calculate percentages

 Calculate ratios

 Need complex calculations

 Memory vs CPU

 Calculated Columns consume memory

 Measures consume CPU

44

Calculated Table

 Returns a collection of objects rather than a single value

 Used to transform other tables

 Starts with a table, then transforms it (e.g., FILTER function)

45

Aggregation Functions

46

Aggregation Functions

 Common aggregation functions

 SUM

 AVERAGE

 MAX / MIN

 COUNT / COUNTDISTINCT

 Work only on numeric columns

 Aggregate only one column

 SUM (Orders[Price])

 SUM (Orders[Price] * Orders([Quantity])

47

Aggregation Functions

When used in a Measure:

 Can be used to get the aggregation of any column.

Can be used to create formulas that manipulate multiple columns.

48

ALL (REMOVEFILTERS) Function

 Return all rows from a table, or all rows in a column, ignoring any

filters that might have been applied.

 Useful for clearing filters and creating calculations on all the rows in a

table.

 Can be used to clear the Filter Context from:

 1 Column

 ALL(Product[Color])

 Multiple Columns

 ALL(Product[Color], Customer[City])

49

TIP:

Apply an ALL function to

the Fact Table to clear all

filters from all Dimension

Tables.

Labs 7 - 10

Iterator Functions

50

The ‘X’ Aggregation Functions

 Iterators: perform row-wise operations before they summarize

 SUMX

 AVERAGEX

 MINX

 MAXX

 RANKX

 Iterator functions require:

 A table which to iterate over

 An expression to process row-by-row

 Performs aggregation on row-level results

51

 COUNTX

 COUNTAX

 PRODUCTX

 VARX.P / VARX.S

 STDEV.P / STDEV.S

 CONCATENATEX

 MEDIANX

 PERCENTILEX.EXC

 PERCENTILEX.INC

 GEOMEANX

Example of SUMX

What is the total profit?

52

Example of SUMX

What is the total profit?

53

Profit =

Example of SUMX

What is the total profit?

54

Profit = [Sale] – [Cost]

Example of SUMX

What is the total profit?

55

Total Profit = SUMX([Sale] – [Cost])

Example of SUMX

What is the total profit?

56

Total Profit = SUMX(Data, [Sale] – [Cost])

Data

Example of SUMX

What is the total profit?

57

Total Profit = SUMX(Data, Data[Sale] – Data[Cost])

Data

Example of SUMX

For each row in the Data table,

evaluate the expression,

then SUM all the results

58

Total Profit = SUMX (Data, Data[Sale] - Data[Cost])

Labs 11 - 16

Evaluation Context

59

Two Types of Evaluation Context

 Context – The data that is available to a given calculation

 Row Context

 Evaluates information contained on a single row.

 Used when evaluating Calculated Columns.

Tax = Sales[Subtotal] * 10%

 Filter Context

 Evaluates the entire data model via external (and internal) filters.

 Used when evaluating Measures and Calculated Tables

Tax = CALCULATE(Sales, [LineTotal] * 10%)

60

Filtering Process

1. Start with all data from the entire Data Model.

2. Apply any Slicer filters and/or visual filters.

3. Apply any row/column filters from a Pivot Table.

4. Apply any in-formula filters derived from functions

(ex: FILTER, ALL, CALCULATE)

61

1 - Start with the Entire Data Model

62

2 - Filter for Years

63

[Year] = 2017 & 2018

3 - Filter for Months

64

[Year] = 2017 & 2018

[Month] = “January” thru “June”

4 - Filter for Supplier

65

[Year] = 2017 & 2018

[Month] = “January” thru “June”

[Supplier] = “SportsWorld”

5 - Filter for Product & Region

66

[Year] = 2017 & 2018

[Month] = “January” thru “June”

[Supplier] = “SportsWorld”

[Product] = “Gloves”

[Region] = “Northeast”

6 - Filter for Sales Representative

67

[Year] = 2017 & 2018

[Month] = “January” thru “June”

[Supplier] = “SportsWorld”

[Product] = “Gloves”

[Region] = “Northeast”

[Sales Representative] = “Alice Abrams”

6 - Perform the Expression

68

7 - Performed as a Single Expression

69

CALCULATE Function

70

The CALCULATE Function

 The most important, most powerful DAX function

 The only DAX function that can completely change the filters coming

from the Filter Context

 Can overwrite or supplement existing filters

CALCULATE(<expression> [, <filter1> [, <filter2> [, …]]])

=CALCULATE([Total Sales], Product[Category] = “Bikes”)

71

CALCULATE’s Processing Order

1. Visual filters are applied (ex: pivot table rows/columns, slicers, etc.)

2. Filters from CALCULATE are added

3. Conflicting filters between visual and CALCULATE are replaced

with CALCULATE’s filters

4. Expression is calculated

72

Syntax Sugar

 The act of reducing a complex formula into a simpler formula

 Hides the complexity from the user

73Labs 17 - 19

Date/Time Functions

74

Date and Time Functions

 Used to process date/time data in various ways:

 Convert to and from strings

 Compute offsets

 Switch timezones

 Simplifies the process of working with dates and the peculiarities

associated with calculating and formatting them.

75

Time Intelligence Functions

 Used to make working with common date-based measures easier.

 Year to Date

 Quarter to Date

 Month to Date

 Same Period Last Year

 Previous Period

 Are extremely mission-specific.

 Flexibility is sacrificed for ease of use.

76

Examples of Time Intelligence

Sales YTD = CALCULATE(
 [Sales Total],
 DATESYTD(Dates[Date]))

To account for fiscal years, define the end of the FY

Sales YTD = CALCULATE(
 [Sales Total],
 DATESYTD(Dates[Date], “06-30”))

77

Examples of Time Intelligence

Sales PY = CALCULATE([Sales Total],
 SAMEPERIODLASTYEAR(Dates[Date]))

Sales PM = CALCULATE([Sales Total],
 PREVIOUSMONTH(Dates[Date]))

Sales PY = CALCULATE([Sales Total],
 DATEADD(Dates[Date], -1, YEAR))

Sales PM = CALCULATE([Sales Total],
 DATEADD(Dates[Date], -1, MONTH))

78

Examples of Time Intelligence

Calculate the running total for [Sales Total] without
ever resetting

RT_Sales =
CALCULATE (
 SUM ([Sales Total]),
 FILTER (ALL (Dates[Date]),
 Dates[Date] <= MAX (Dates[Date])
)

)

79

Date Tables

Required to have a Date Table when using time intelligence functions.

 1 row per day

 Days must be consecutive (no skipped days)

 Must have a column defined as a DATE data type

 Must be marked as a Date Table

80Labs 20 - 23

	01 Combining Tables
	Slide 1: Combining Tables
	Slide 2: Combining Tables – Strategies
	Slide 3: Appending Tables
	Slide 4: Appending Tables (cont)
	Slide 5: Merging Tables
	Slide 6: Merging Tables (cont.)
	Slide 7: Creating Relationships
	Slide 8: Creating Relationships (cont)
	Slide 9: Relationships in Action

	02 Join Types
	Slide 10: Join Types
	Slide 11: JOIN types
	Slide 12: JOIN types
	Slide 13: JOIN types
	Slide 14: JOIN types
	Slide 15: JOIN types

	03 Calendar Tables
	Slide 16: Calendar Tables
	Slide 17: Calendar Tables
	Slide 18: Why use a Calendar Table?
	Slide 19: Why use a Calendar Table?
	Slide 20: Calendar Table Requirements
	Slide 21: Low-Cardinality – Dates and Time
	Slide 22: Low-Cardinality – Big Numbers
	Slide 23: Low-Cardinality – Big Numbers (cont.)
	Slide 24: Ways to create a Calendar Table
	Slide 25: Creating a Dynamic Calendar Table
	Slide 26: Beware of CALENDARAUTO()
	Slide 27: Creating a Dynamic Calendar Table
	Slide 28: Potential Ideal Date Field

	04 DAX
	Slide 29: DAX (Data Analysis Expressions)
	Slide 30: What is DAX
	Slide 31: DAX (as opposed to Excel)
	Slide 32: DAX is a Functional Language
	Slide 33: Create Readable Code
	Slide 34: Create Readable Code
	Slide 35: DAX Syntax
	Slide 36: DAX Typing Conventions

	05 DAX Calculations
	Slide 37: DAX Calculations
	Slide 38: DAX Creates
	Slide 39: Calculated Columns
	Slide 40: Calculated Columns (example)
	Slide 41: Measures
	Slide 42: Advantage of Measures
	Slide 43: Measure Naming Conventions
	Slide 44: Calculated Columns vs Measures
	Slide 45: Calculated Table

	06 Aggregation Functions
	Slide 46: Aggregation Functions
	Slide 47: Aggregation Functions
	Slide 48: Aggregation Functions
	Slide 49: ALL (REMOVEFILTERS) Function

	07 Iterator Functions
	Slide 50: Iterator Functions
	Slide 51: The ‘X’ Aggregation Functions
	Slide 52: Example of SUMX
	Slide 53: Example of SUMX
	Slide 54: Example of SUMX
	Slide 55: Example of SUMX
	Slide 56: Example of SUMX
	Slide 57: Example of SUMX
	Slide 58: Example of SUMX

	08 Evaluation Context
	Slide 59: Evaluation Context
	Slide 60: Two Types of Evaluation Context
	Slide 61: Filtering Process
	Slide 62: 1 - Start with the Entire Data Model
	Slide 63: 2 - Filter for Years
	Slide 64: 3 - Filter for Months
	Slide 65: 4 - Filter for Supplier
	Slide 66: 5 - Filter for Product & Region
	Slide 67: 6 - Filter for Sales Representative
	Slide 68: 6 - Perform the Expression
	Slide 69: 7 - Performed as a Single Expression

	09 CALCULATE
	Slide 70: CALCULATE Function
	Slide 71: The CALCULATE Function
	Slide 72: CALCULATE’s Processing Order
	Slide 73: Syntax Sugar

	10 Date/Time Functions
	Slide 74: Date/Time Functions
	Slide 75: Date and Time Functions
	Slide 76: Time Intelligence Functions
	Slide 77: Examples of Time Intelligence
	Slide 78: Examples of Time Intelligence
	Slide 79: Examples of Time Intelligence
	Slide 80: Date Tables

